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Abstract—Procedures using neural networks are developed for
characterizing multiband reconfigurable antennas. A multilayer
perceptron (MLP) is used to locate the operational frequency
bands of the antenna at different reconfigured conditions. Another
self-organizing map (SOM) neural network accomplishes the task
of locating the switches to be turned ON for a desired frequency
response. The developed formulation is tested on a laboratory
prototype antenna.

Index Terms—Multilayer perceptron (MLP), neural networks,
reconfigurable antenna, self-organizing map (SOM).

I. INTRODUCTION

I N RESPONSE to the ever-increasing needs of antenna band-
width, considerable amount of effort is currently under way

to develop multiband antennas. Much has also been achieved
in implementing dual band antennas [1]–[3]. Mostly planar de-
signs are preferred for these structures due to their added advan-
tage of small size, low manufacturing cost and conformability.
In recent years fractal antennas have been used as miniature
multiband antennas [4]–[7] in which the self-similarity property
is used to resonate the antenna at a number of frequency bands,
equal to the number of fractal iterations in the antenna. Further-
more, the multiband property can also be achieved by making
the structure reconfigurable, in which the different radiating ele-
ments of an array are connected together using switches to form
groups of elements that resonate at different frequency bands
[8]–[13]. Reconfigurable multiband antennas are attractive for
many military and commercial applications where it is desirable
to have a single antenna that can be dynamically reconfigured to
transmit and/or receive on multiple frequency bands. Such an-
tennas find applications in space-based radar, unmanned aerial
vehicles, communication satellites, electronic intelligence air-
craft and many other communications and sensing applications.
The technology of design and fabrication of microelectrome-
chanical systems (MEMS) for RF circuits has had a major pos-
itive impact on reconfigurable antennas [14]–[16].

For frequency reconfigurable antennas, the challenging tasks
are twofold: 1) find an analytical procedure to locate the fre-
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quency bands of operation (analysis problem) and 2) how to
connect the radiating elements together, such that the resulting
module will have desired frequency bands (design problem), or
in other words to determine which switches to turn ON, so that
a specific set of elements will be active to make the structure to
operate in the desired frequency bands.

Due to the multiscale nature of reconfigurable antennas, a
single analytical method cannot characterize the whole struc-
ture. On the other hand, the use of different analytical methods
for a single structure makes it a computationally intensive task,
leading to the use of heavy computational resources. So there
is a need to search for an analysis procedure for reconfigurable
antennas that can characterize the antenna accurately.

In recent years neural networks and genetic algorithms are
being used extensively for new antenna designs. In this paper,
we have studied the use of neural networks (NNs) for analysis
and design of a multiband reconfigurable planar antenna. NNs
have emerged in recent years as a powerful technique for mod-
eling general input-output relationships. The distinguished char-
acteristics of NNs such as learning from data, to generalize pat-
terns in data and to model nonlinear relationships, makes them
a good candidate to apply for many different branches of en-
gineering. In this work, we have used two different neural ar-
chitectures for analysis and design of a reconfigurable antenna.
In the analysis phase, NNs are used to locate the operational
frequency bands for different combination of switches. This is
treated as a mapping formation problem and is accomplished
by an MLP trained in the backpropagation mode. In the design
phase, the job of the NN is to determine the switches that are to
be made ON for the structure to resonate at specific bands. This
task is handled as a classification type of problem and is accom-
plished by a SOM neural network.

The following section describes the reconfigurable antenna
structure under study. In Section III, the developed neurocom-
putational technique is described for analysis and design.

II. THE ANTENNA STRUCTURE

The proposed neurocomputational technique is investigated
for a laboratory prototype antenna. The structure under inves-
tigation is shown in Fig. 1. The basic antenna is a 130 bal-
anced bowtie. A portion of the antenna corresponds to a two
iteration fractal Sierpinski dipole. The remaining elements are
added (three elements on each side) to make the antenna a more
generalized reconfigurable structure. The reason for choosing
this structure for modeling is two-fold. First is the multiband be-
havior of fractal Sierpinski antenna [4]–[6]. The second reason
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Fig. 1. Multiband antenna under investigation.

Fig. 2. Frequency response plot of the antenna with all the switches in OFF

condition.

is that the broader angles move the operating bands to lower fre-
quencies, which can be useful to reduce the antenna height. In
addition, the input resistance and reactance variations become
smoother when opening the flare angle [17], [18].

The antenna was fabricated on a Duroid substrate ( )
with no radiating element touching to their adjacent elements.
In the absence of actual MEMS switches, their electromagnetic
performance is considered ideal and their placement is accom-
plished by small physical connections of the antenna’s adjacent
conducting parts. Our aim in this paper is to show the feasibility
of use of NNs as an analysis tool for multiband reconfigurable
antennas. With the use of actual MEMS switches, the same tech-
nique is equally applicable.

III. APPLYING NEUROCOMPUTATIONAL TECHNIQUE FOR

ANALYSIS

A. Problem Formulation

By setting all the switches OFF the antenna is showing a res-
onance in the range 1.2–2.4 GHz (Fig. 2), and the radiation pat-
tern is similar to that of the printed bow-tie dipole antennas.
This is evident from the broadband nature of bowtie antennas
[19]. But here it has to be noted that, even in the case of “all
switches being OFF” the mutual coupling effects between the el-
ements is still there in addition to the characteristics of a simple
bowtie. Setting the switches to ON makes the antenna resonate
at a number of different frequency bands. Through different
combinations of switches it has been observed that the bands
at which the antenna resonates depends on the switch positions
that are at ON state. In order to implement this nonlinear map-
ping function between the ON switch positions and the reso-
nance pattern of the reconfigurable antenna, we have used an
MLP neural network trained in the backpropagation mode.

B. ANN Implementation

MLP neural networks are by far the most popular type of
neural networks capable of approximating generic classes of
functions [20]. These networks trained in the error backprop-
agation mode have already been used in many microwave en-
gineering applications and specifically for antenna applications
[21]–[23]. In these networks during training, the network ad-
justs its weights and thresholds in each iteration, using the up-
date equations

(1)

(2)

(3)

where : weighting factors between hidden and output layers;
: weighting factors between input and hidden layers;

: is the number of input units; :
is the number of hidden units; : is the number
of output units; and being the learning rate and momentum,
respectively.

Training minimizes the error between the neural network
predicted and the desired outputs

(4)

where ; where is the total number of training
samples used for training. The transfer functions usually used
for the hidden units are sigmoidal whereas for the output units,
it is linear.

Selection of training parameters for neural networks and the
entire training process mostly depends on experience besides
the type of problem at hand. The accuracy of a properly trained
NN depends on the accuracy and the effective representation
of the data used for its training. Numerical data has to be gener-
ated for those parameters the user wants to use in neural network
training. The numerical data generation process for the present
problem is described below. The parameters to be mapped, for
which data generation is required, are the reconfigurable an-
tenna structures and their corresponding frequency response.

Data Generation and Preprocessing: For generating data,
we measured the frequency domain response ( ) of the an-
tenna for various combinations of ON switch positions, using an
HP8714ES network analyzer. The operational frequency range
of the antenna is 0.1–3.0 GHz. The frequency response plot is
then sampled at equidistant frequency points so that the sam-
pled plot adequately represents the original plot, emphasizing
the mark points. This was done in order to use as few
neurons as possible in the output layer of the network, because
our aim here is to develop the network that can represent the fre-
quency response ( ) of the antenna for various switch com-
binations. It was found that at least 40 sample points adequately
represent the original frequency response of the reconfigurable
structure. These sampled points are then scaled to remain within
the range [ , 1] and then used as the output training data of
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Fig. 3. Strategy used to choose the bit sequence representing the switch
position and condition for creating input training data.

Fig. 4. Bit string equivalent of a typical reconfigurable structure. The small
circles represent the ON switch positions and the corresponding active elements
are marked dark.

the network. Scaling of data is desirable for efficient training of
neural networks [25].

The corresponding input training data of the network for the
frequency response output consists of bit strings (1s and 0s) rep-
resenting the switch position and condition (either ON or OFF).
A “1” represents an ON switch whereas a “0” represents an OFF

switch. Although there is no restriction in choosing the order
sequence, in this work we have used the following strategy. The
order of switch position and condition for both half of the dipole
starts from the tip element directly connected to the source and
looking at each angular direction as shown in Fig. 3. This con-
tinues for each element on both halves (upper and lower). A total
of 18 bits covers the entire 12 elements of the antenna array and
its surrounding switches. The bit string for a typical reconfig-
urable structure is shown in Fig. 4. These bit strings are used as
the input training data for the network. Scaling of the input data
is not required as they are already in the range [0, 1].

C. Observations

A set of 78 input-output pairs was used for training of the
network. For proper training, the number of units in the single
hidden layer was determined to be 22. The trained network
was then tested for the frequency response of the reconfigurable
structure for different combinations of switches. The response
of some of the typical combinations is shown in Fig. 5(a)–(c).
The responses are also compared with the measured values.
Now the developed network can be used to find out the opera-
tional frequency bands of the multiband antenna. The advantage
of using NNs is that it avoids the computational complexity in-
volved in the numerical modeling of the antenna. Furthermore,
the response time is very fast for NNs.

IV. APPLYING NEUROCOMPUTATIONAL TECHNIQUE FOR

DESIGN

A. Problem Formulation

Formulating the problem for design is more challenging
than analysis, because of the large number of combinations of
switches and the corresponding different frequency responses.

Fig. 5. (a-c): Comparison of NN output of some typical reconfigurable
structures with the measured value.

The purpose here is to correlate any frequency response, within
the operational range of the antenna, with a reconfigurable
structure as closely as possible. We approached the design
procedure as a clustering problem and used a SOM neural
network [24] for classification of the frequency response plots.
The task of the SOM is to map a continuous input space of
activation patterns onto a discrete output space of neurons by
a process of competition among the neurons in the network.
Based on the shape of the frequency response plots, the SOM
NN classifies the responses into different clusters. Each Cluster
has some similarity among the frequency responses in the oper-
ational range and their depth. The Clusters so formed are then
related with their corresponding antenna structure. Therefore,
for each Cluster a set of typical reconfigurable structures was
formed. Given a frequency response plot, the corresponding
approximate reconfigurable structure can be traced out from
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Fig. 6. (a-d). Clusters of the frequency responses of the reconfigurable
structures as made by the SOM network.

these sets of typical structures, depending on, to which Cluster
the frequency response is adapting, as determined by the SOM.

B. ANN Implementation

The SOM NN consists of an input layer of nodes, where the
inputs to the NN are applied, and an output layer of nodes,
where the categorization (grouping/clustering) of the inputs are

Fig. 7. (a-d) Reconfigurable structures corresponding to the Clusters 1 – 4
as shown in Fig. 6(a)–(d) respectively. The inset picture shows the formation
of paths for a typical configuration. Structures corresponding to these or their
variants can be used to get the desired frequency response of the reconfigurable
antenna.

formed. The nodes in the output layer, most often are orga-
nized in a two-dimensional (2-D) array. Training is performed
in an unsupervised way using Kohonen learning algorithm [24].
The training can be viewed as a procedure that learns to group
input patterns in Clusters in a way inherent to the data. To train
the SOM NN, continuous valued input vectors are presented in
random sequence to the network. The mapping from the external
input patterns to the network’s activity patterns is realized by
correlating the input patterns with the connection weights. After
enough input patterns have been presented, weights converging
to output nodes of the SOM NN specify Cluster centres that rep-
resent the input patterns.

In the present problem, the inputs to the SOM NN is the fre-
quency responses ( ) fed through 40 nodes (sampled fre-
quency points). So, the output training data for analysis problem
was used in the design problem as the input to the network. In
the output layer, we took four neurons, because it was observed
that classifying the response plots into four groups marks each
Cluster with distinguished features. The adaptive process for
SOM used in this work is as described in [25]. In this the weights
of a 2-D SOM network are updated according to

(5)

where is the time varying learning parameter given by
, ; ( ), ( )

are constants. is the neighborhood function given by

(6)

where is the “effective width” of the topological neighbor-
hood given by , ;

, ( ) a constant. is the lateral distance
between winning neuron and excited neuron .
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Fig. 8. Paradigm of reconfigurable structure design.

The four Clusters of frequency responses as formed by the
properly trained SOM NN are shown in Fig. 6(a)–(d).

C. Observations

The class of curves in Cluster-1 [Fig. 6(a)] represents a
broadband in the range 1500–2000 MHz and a deep band
around the mid-frequency of 2750 MHz. The typical structures
corresponding to Cluster-1 are shown in Fig. 7(a). Fig. 7 shows
only the paths of the active elements in the reconfigurable
antenna structure and the inset picture shows the formation of
paths for a typical configuration) and these combinations nor-
mally do not excite the lower frequencies. The configurations
corresponding to Cluster-2 [Fig. 6(b)] shows operational bands
in the lower frequency ranges (500–1000, 1000–1500 MHz)
and prominent band in the highest frequency range (2500–2780
MHz) with a large isolation between these lower and higher
bands. The class of curves in Cluster-3 differs from that of
Cluster-1 in the point that the mid-frequency band (1600–2000
MHz) in Cluster-3 is more prominent and mostly they show
small bands in the lower frequency ranges also, in addition to
the deep high-frequency band. The structures corresponding to
Cluster-4 [Fig. 7(d)] shows a broad prominent band around the
frequency 1750 MHz but they don’t show prominent lower or
higher frequency bands.

The developed SOM network now can be used for design
purposes. The paradigm of the design process is shown in Fig. 8,
and described below.

Step 1: Give the network the desired frequency response
(input);

Step 2: SOM NN matches the frequency response to the
closest Cluster;

Step 3: The antenna configuration can be chosen from the
set of structures corresponding to that Cluster, starting with a
simple structure with minimum number of switches;

Step 4: Depending on requirement, more elements can be ex-
cited over the original structure.

As the response of the SOM NN is almost instantaneous, the
approximate configuration of the antenna for any frequency re-
sponse (in the operational frequency range of the antenna) can
be traced out within no time. This is the advantage of using neu-
rocomputational technique, reducing drastically the time for re-
configuring the structure.

V. CONCLUSION

Two different neural network structures are used for analysis
and design of a laboratory prototype frequency reconfigurable

antenna. In analysis, an MLP trained in the backpropagation
mode is developed to identify the operational frequency bands
of the reconfigurable structure. It drastically reduces the mathe-
matical complexity involved in the different numerical methods
used to model the entire reconfigurable antenna due to its mul-
tiscale structure. The design phase is approached as a clustering
problem and a SOM network is used to categorize the frequency
responses of the reconfigurable structure. Corresponding to a
new frequency response, the position of the switches to be made
ON can be identified from a group of typical structures approx-
imately. The developed neurocomputational methodology can
be extended for characterizing any reconfigurable electromag-
netic structure.
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